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Abstract

This paper proposes a novel tuning strategy for robust proportional-integral-derivative (PID) controllers based on the augmented Lagrangian
particle swarm optimization (ALPSO). First, the problem of PID controller tuning satisfying multiple H∞ performance criteria is considered,
which is known to suffer from computational intractability and conservatism when any existing method is adopted. In order to give some
remedy to such a design problem without using any complicated manipulations, the ALPSO based robust gain tuning scheme for PID controllers
is introduced. It does not need any conservative assumption unlike the conventional methods, and often enables us to find the desired PID
gains just by solving the constrained optimization problem in a straightforward way. However, it is difficult to guarantee its effectiveness in a
theoretical way, because PSO is essentially a stochastic approach. Therefore, it is evaluated by several simulation examples, which demonstrate
that the proposed approach works well to obtain PID controller parameters satisfying the multiple H∞ performance criteria.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Tuning strategies for robust proportional-integral-derivative
(PID) controllers satisfying the given H∞ specifications based
on optimization approaches have recently received consider-
able attention. However, the design problem for optimal robust
PID controllers based on H∞ techniques results in a non-
convex optimization problem which suffers from computational
intractability and conservatism. For such problems, Åström,
Panagopoulos, and Hägglund (1998) introduced an iterative
procedure using the well-known Newton–Raphson search al-
gorithm to find the PI controller gains within the non-convex
domain. However, the choice of good initial conditions is a
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crucial factor, since it has a considerable effect on a computa-
tional efficiency of Newton–Raphson iterations. In Hwang and
Hsiao (2002), a derivative gain should be chosen in advance
by the designer. Then, based on the given derivative gain, the
analytical expressions for describing the boundary of an equal-
ity constraint set on proportional and integral gains are de-
rived. The maximum allowable proportional and integral gains
are obtained by tracing the boundaries of equality constraint
sets using a path-following algorithm. Ho (2003) presented
a synthesis of H∞ PID controllers based on the generalized
Hermite–Biehler theorem for complex polynomials which is
used to develop a linear programming based optimization algo-
rithm for determining an admissible PID controller. However,
a suitable proportional gain should be chosen in advance by the
designer to determine the integral and derivative gains. There-
fore, the reasonable selections of derivative gain in Hwang and
Hsiao (2002) and proportional gain in Ho (2003) are impor-
tant issues to improve the performance of the developed PID
controllers.

From the above observations, it is required to develop a novel
tuning strategy of robust PID controller, which can determine
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all controller gains simultaneously by solving an optimization
problem subject to multiple constraints on H∞ specifications.
Further, most of the conventional PID controller design tech-
niques are based on simple characterization of system dynam-
ics as first-order or second-order models, and there are very few
generally accepted design methods for systems with higher or-
der (Ho & Lin, 2003). Thus, it is one of the important research
issues to develop a robust PID controller applicable to higher
order systems.

On the other hand, Eberhart and Kennedy (1995) recently
proposed a particle swarm optimization (PSO) algorithm which
is a swarm intelligence technique and is one of the evolution-
ary computation algorithms. PSO has attracted a lot of attention
in recent years because of the following reasons (Parsopoulos
& Vrahatis, 2002): First, it requires only a few lines of com-
puter code to realize the PSO algorithm. Second, its search
technique using not the gradient information but the values of
the objective function makes it an easy-to-use algorithm. Third,
it is computationally inexpensive, since its memory and CPU
speed requirements are very low. Fourth, it does not require
a strong assumption made in conventional deterministic meth-
ods such as linearity, differentiability, convexity, separability
or non-existence of constraints in order to solve the problem
efficiently. Finally, its solution does hardly depend on initial
states of particles, which could be a great advantage in en-
gineering design problems based on optimization approaches.
Further, Sedlaczek and Eberhard (2006) recently developed an
augmented Lagrangian particle swarm optimization (ALPSO)
algorithm to handle the optimization problem subject to equal-
ity and inequality constraints.

The aim of this paper is to develop a simple and compu-
tationally tractable tuning strategy for robust PID controllers
satisfying multiple H∞ specifications. Finding such controller
gains is known to be computationally intractable by the con-
ventional techniques. Therefore, in order to solve simply and
directly such a design problem without using any complicated
manipulations, we first formulate the ALPSO based constrained
optimization problem, and then present its distinctive features.
It is important to note that a set of PID gains can be directly
obtained by solving a non-convex optimization problem based
on the ALPSO technique, which is the main difference from
the conventional methods by Hwang and Hsiao (2002) and Ho
(2003). Also, the proposed technique is applicable both to stable
and to unstable systems, which is different from Kristiansson
and Lennartson (2006). However, it is difficult to guarantee its
effectiveness in a theoretical way, because PSO is essentially a
stochastic approach. Therefore, several numerical examples are
given to verify the effectiveness of our robust PID controller
design technique.

2. Problem formulation

Consider the standard PID feedback control system shown
in Fig. 1 where r(t) is the reference signal, u(t) is the control
signal, y(t) is the controlled output, d(t) is the disturbance
input, and w(t) is the sensor noise. P(s) = N(s)/D(s) is the
linear time-invariant system where N(s) and D(s) are coprime

P(s)r ++

+

_
u

d

y

w

e +
K(s)

_

Fig. 1. Block diagram of the PID feedback control system.

polynomials in s defined for n < m as

N(s) := ans
n + an−1s

n−1 + · · · + a1s + a0,

D(s) := sm + bm−1s
m−1 + · · · + b1s + b0. (1)

K(s) denotes the PID controller which is augmented by a low
pass filter on the derivative part of the traditional PID controller
and given as

K(s) := kp

(
1 + 1

tis
+ tds

1 + (td/N)s

)
, (2)

where kp ∈ R is the proportional gain, ti ∈ R is the inte-
gral time, td ∈ R is the derivative time, and td/N is the filter
time constant. It is assumed that the design parameters (kp,
ti , td , N ) are all positive real numbers. Therefore, the feasi-
ble parameter domain �f is �f := {(kp, ti , td , N) ∈ R4 :
kp > 0, ti > 0, td > 0, N > 0}.

For the system in Fig. 1, the loop transfer function is L(s)=
P(s)K(s), and then sensitivity function S(s) and complemen-
tary sensitivity function T (s) are defined as

S(s) := 1/(1 + L(s)), T (s) := L(s)/(1 + L(s)). (3)

The robust performance criteria considered in this paper, which
are based on S(s) and T (s), are given as

sup
��0

|WS(j�)S(j�)|�1, sup
��0

|WT (j�)T (j�)|�1, (4)

where WS(s) and WT (s) are stable frequency-dependent
weighting functions which represent the required stability and
performance specifications.

The problem of this paper is to search for the design pa-
rameters (k∗

p, t∗i , t∗d , N∗) of (kp, ti , td , N ) in PID controller
(2), which guarantee that (i) the closed-loop system in Fig. 1
is internally stable, and (ii) the robust performance criteria in
(4) are satisfied, based on the optimization approach. Note that
the above one is among the fixed structure/order H∞ controller
design problems, which is a challenge to control system engi-
neers since it is still a computationally intractable and highly
time-consuming complex problem. Therefore, it is one of the
important research issues to develop simple design strategies
for optimal robust PID controllers.

Next, the optimization problem to determine the parameters
(k∗

p, t∗i , t∗d , N∗) of PID controller (2) is explicitly formulated.
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In this paper, the following objective function is adopted:

�max(kp, ti , td , N) := arg max
�i

{Re(�i (kp, ti , td , N)), ∀i}, (5)

where �i (·) ∈ C denotes the ith pole of the closed-loop system
Tcl(s)( = T (s)) in Fig. 1, and Re(�i (·)) denotes the real part of
�i (·) ∈ C. Thus, �max(kp, ti , td , N) in (5) denotes the maximum
one among the real parts of all poles of Tcl(s) with given (kp,
ti , td , N ). Then, the optimization problem is summarized as
follows:

min
kp,ti ,td ,N

�max(kp, ti , td , N) (6)

subject to (kp, ti , td , N) ∈ �f , the H∞ performance criteria
(4), and

�max(kp, ti , td , N)��, (7)

where � < 0 is given by the designer. Note that the constraint
(7) is introduced to guarantee the stability of the closed-loop
system. Also, the values of four design parameters (kp, ti , td ,
N ) are directly determined by solving the above optimization
problem, not assuming that at least one of them is fixed in
advance by the designer as Hwang and Hsiao (2002) and Ho
(2003).

3. Robust PID controller design based on the ALPSO
algorithm

In this section, a concrete design procedure to determine the
design parameters (k∗

p, t∗i , t∗d , N∗) by solving the optimization
problem considered in Section 2 based on the ALPSO algorithm
will be presented. First, a brief overview of ALPSO is presented.

3.1. Constrained PSO scheme

Consider the following optimization problem: for given f (x),
g(x) and h(x),

min
x

f (x), x ∈ D ⊆ Rnp (8)

subject to

g(x) = 0, g : Rnp → Rme ,

h(x)�0, h : Rnp → Rmi , (9)

where D denotes the search space. Then, the augmented
Lagrange multiplier method is introduced to transform the
above constrained optimization problem into an unconstrained
optimization problem as

L(x, �, �) = f (x) +
me+mi∑

�=1

����(x) +
me+mi∑

�=1

���
2
�(x), (10)

where

��(x) =
⎧⎨
⎩

g�(x), 1���me,

max

[
h�−me(x),

−��

2��

]
, me + 1���me + mi

and � := (�1, �2, . . . , �me+mi
)T ∈ Rme+mi and � := (�1,

�2, . . . , �me+mi
)T ∈ Rme+mi denote the Lagrange multiplier

and the penalty factors, respectively. The third term in (10) is
introduced to guarantee that the solution x∗ of (8) subject to (9)
is not only a stationary point but also a minimum of L(x, �, �)

in (10) for the correct Lagrange multiplier �∗. However, �∗ and
the appropriate penalty factors � are problem dependent and
thus unknown.

Hence, x∗ is obtained by solving a sequence of L(x, �, �)

with subsequent updates of �, � and x as

�	+1
� = �	

� + 2�	
���(x	), (11)

where �0 = 0 and �0 = �0 which is given by the designer;
for given �g and �h which denote the tolerances for acceptable
constraint violations

�	+1
� =

⎧⎨
⎩

2�	
� if |J�(x	)| > |J�(x	−1)| and |J�(x	)| > ��,

0.5�	
� if |J�(x	)|���,

�	
� else,

(12)

where J�(·)=g�(·) and �� = �g for 1���me, J�(·)=h�(·) and
��=�h for me+1���me+mi . Then, x	 in (11)–(12) is updated
based on the conventional PSO algorithm (Eberhart & Kennedy,
1995) described as follows: Consider a swarm consisting of mp

particles. The ith particle xi = (xi,1, xi,2, . . . , xi,np )T ∈ Rnp is
manipulated according to the following equations:

xk+1
i = xk

i + vk+1
i ,

vk+1
i = �vk

i + c1

k
i (x

best,k
i − xk

i ) + c2�
k
i (x

best,k
swarm − xk

i ), (13)

where the inertia factor �, the cognitive scaling factor c1, and
the social scaling factor c2 influence the particle trajectories
and thus the convergence and search diversity properties, which
are given by the designer. The random numbers 
k

i and �k
i are

uniformly distributed in [0, 1] and represent the stochastic be-
haviors. xbest,k

i defined as

xbest,k
i := arg min

xj
i

{L(xj
i , �

	, �	), 0�j �k} (14)

denotes the best previously obtained position of the ith particle.
xbest,k

swarm defined as

xbest,k
swarm := arg min

xk
i

{L(xk
i , �

	, �	), ∀i} (15)

denotes the best position in the entire swarm at the current it-
eration k. Based on the above algorithm, x	 in (11) and (12) is
obtained as x	 = xbest,kmax

swarm where kmax is a user-defined maxi-
mum iteration number of k. The flowchart of the ALPSO algo-
rithm is given in Fig. 2.
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Randomly initialize xi and vi .

Initialize α0=0 and β0=β0 .
Set ν=0 and k=0.

0 0

xi        = xi, x
ν = xswarm ,

xswarm := arg min{L (xi, α0, β0), ∀i}

best, 0

best, 0

best, 00

xi
0

are satisfied?
Termination criteria

Update xi  based on (13).
Set k = k+1.

k 

N

xi       := arg min{L (xi, αν , βν), 0 ≤ j ≤ k},best, k   

best, k

j

j
xi

k
xi

xswarm := arg min{L (xi, αν , βν), ∀i}k

k ≥ k max

Y

N

Set xν := xswarm     .

Update αν, βν based on (11)-(12) using xν

Set ν = ν+1, k=0.

Initialize xi = xi      and vi = vi
0 kmax kmax

parameter
x* := xν

Optimal

End

Y

0

best, kmax

0

Fig. 2. Flowchart of the ALPSO.

3.2. Robust PID controller tuning scheme

In order to find the parameters (k∗
p, t∗i , t∗d , N∗) based on the

ALPSO algorithm, we reformulate the optimization problem
(6) subject to (4) and (7). First, define each particle containing
the design parameters as

x := (x1, x2, x3, x4)
T

= (log10 kp, log10 ti , log10 td , log10 N)T. (16)

Note that the technique using common logarithms as in (16)
enables one to search a broader parameter space of (kp, ti ,
td , N ). In case that the PID controller has some negative gains,
we set x := (kp, ti , td , N). Then, the PID controller in (2) is
modified based on (16) as

K(s; x) = 10x1

(
1 + 1

10x2s
+ 10x3s

1 + 10(x3−x4)s

)
. (17)

Also, the objective function (5) is written as

�max(x) := arg max
�i (x)

{Re(�i (x)), ∀i}, (18)

where �i (x) ∈ C denotes the ith pole of the closed-loop system
Tcl(s; x)=L(s; x)/(1+L(s; x)) where L(s; x) := P(s)K(s; x).

The optimization problem to find a set of PID controller gains
(k∗

p, t∗i , t∗d , N∗) is summarized as:

Optimization problem for ALPSO.

min
x

f (x) := �max(x), x ∈ D ⊆ R4 (19)

subject to

h(x) := (h1(x), h2(x), h3(x))T

=

⎡
⎢⎢⎣

sup
��0

|WS(j�)S(j�; x)| − 1

sup
��0

|WT (j�)T (j�; x)| − 1

�max(x) − �

⎤
⎥⎥⎦ �0, (20)

where S(j�; x) := 1/(1 + L(j�; x)) and T (j�; x) :=
L(j�; x)/(1 + L(j�; x)).

The search space is set as D := {x ∈ R4 : x�x�x} with
x > x which are given by the designer. It may be useful in ap-
plications where the presence of high-frequency noise imposes
a limit on the maximum allowable derivative action as shown
in Grassi and Tsakalis (2000). Also, the solution of the above
optimization problem for ALPSO does hardly depend on ini-
tial states of particles (initial choice of controller gains), which
could be a great advantage in engineering design problems
based on optimization approaches. Further, there is no neces-
sity for fixing one of the controller gains in advance, and a set
of PID parameters satisfying the given constraints can be sim-
ply obtained by solving the constrained optimization problem
(19)–(20) using the ALPSO algorithm. Therefore, the above
features enable one to overcome some drawbacks of the con-
ventional methods by Åström et al. (1998), Hwang and Hsiao
(2002) and Ho (2003) mentioned in Section 1.

In the following section, the distinctive features of our ro-
bust PID controller tuning strategy are verified. Specifically, in
Sections 4.2 and 4.3, it will be shown that the parameters of
PID controller which has different structure from (2) can also
be found easily in a similar way to our ALPSO based parameter
tuning scheme.

4. Simulation examples

4.1. Example 1

Consider the simple magnetic levitation system given in
Sugie, Simizu, and Imura (1993). The linearized model about an
equilibrium point of y=0.018 m is given as P(s)=7.147/((s−
22.55)(s + 20.9)(s + 13.99)). Each particle in the swarm for
ALPSO and the PID controller are set as (16) and (17), respec-
tively. The frequency-dependent weighting functions WS(s) and
WT (s) in (20) are, respectively, given as

WS(s) = 5/(s + 0.1),

WT (s) = 4.3867 × 10−7(s + 0.066)

× (s + 31.4)(s + 88)(104/(s + 104))2. (21)

The search space is set as D := {x ∈ R4 : (2, −1, −1, 1)T �x
�(4, 1, 1, 3)T}. The swarm size is equal to mp =100, kmax =3,
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Fig. 3. Plot of the objective function value f (x	) during the optimization
process.

v0
i = 0, �0 = 0, �0 = [1, 1, . . . , 1], and � = c1 = c2 = 0.9. In

(12), �h is set as �h=10−4. Then, the optimization problem (19)
subject to (20) is solved based on the ALPSO algorithm given
in Section 3. The plot of f 	

min := min{f (x	
j ), j ∈ (1, 100)}

where x	
j denotes the particle satisfying the constraints (20)

is illustrated in Fig. 3. There is no x	
j satisfying the given

constraints for about 	 < 0.12 × 104, and f 	
min converges to

−1.7197 (=�max(x∗)) after about 	= 2.5 × 104. The computa-
tion time until 	=2.5×104 is about 687 s. The optimal value x∗
of x is obtained as x∗ = (3.2548, −0.8424, −0.7501, 2.3137)T.
Therefore, the PID controller is designed from x∗ as

K(s)=1798.1

(
1+ 1

0.1438s
+ 0.1778s

1+(8.6336×10−4)s

)
. (22)

The resulting sensitivity and complementary sensitivity func-
tions are shown in Fig. 4, which demonstrates that the given
constraints in (20) are satisfied.

4.2. Example 2

Consider the system in Ho (2003), where the plant and the
PID controller are, respectively, given as follows:

P(s) = (s − 1)/(s2 + 0.8s − 0.2), (23)

K(s; x) = x1 + x2/s + x3s, (24)

where x := (x1, x2, x3) = (kp, ki, kd) ∈ R3 denotes the
each particle in the swarm. In Ho (2003), the constraint only
on the complementary sensitivity function is considered as
‖WT (s)T (s; x)‖∞ �1 where WT (s) = (s + 0.1)/(s + 1).
For the above system, we apply the ALPSO technique to
find the optimal gains x∗ = (k∗

p, k∗
i , k∗

d). Here, an additional
constraint such as �max(x)�0 is introduced to guarantee
the closed-loop system stability. All design parameters are
set identically to those of Section 4.1. The search space
is D := {x ∈ R3 : (−1.8, −1, −1)T �x�(−0.2, 1, 1)T}.
Note that Ho (2003) requires an additional task, root lo-
cus ideas (Datta, Ho, & Bhattacharyya, 2000), to find a
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Fig. 4. Bode plots of sensitivity function S(s; x∗) and complementary sensi-
tivity function T (s; x∗).

necessary condition kp ∈ (−1.8, −0.2) for the existence of sta-
bilizing gains ki and kd . Then, based on kp ∈ (−1.8, −0.2), the
admissible sets of (kp, ki, kd) satisfying ‖WT (s)T (s; x)‖∞ �1
are obtained. However, it is not necessary to find in advance
the feasible region of kp using an additional method in our
approach. The optimal gains are found as x∗ = (k∗

p, k∗
i , k∗

d) =
(−0.5545, −0.04513, −0.4615) for which f (x∗)=�max(x∗)=
−0.4376, and ‖WT (s)T (s; x∗)‖∞ �1 is guaranteed. Note that
the PID controller gains are found by just solving the con-
strained optimization problem based on ALPSO, which shows
the simplicity and effectiveness of our approach comparing to
some rather complicated procedures of Ho (2003).

4.3. Example 3

Consider a mixed sensitivity control problem in Fig. 5 pre-
sented in Saeki (2006), where

P(s) =
[

1/(s + 1) 0.2/(s + 3)

0.1/(s + 2) 1/(s + 1)

]
, (25)

V (s) = �1(s)I2, W(s) = �2(s)I2, �1(s) = (s + 3)/(3s + 0.3),
�2(s)= (10s +2)/(s +40), and a=0.01. For the above system,
the design problem is to develop a decentralized PID controller
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Fig. 5. Mixed sensitivity control problem.

having the following structure:

K(s) =
[
kp1 0
0 kp2

]
+

[
ki1 0
0 ki2

]
1

s

+
[
kd1 0
0 kd2

]
s

1 + 0.01s
(26)

which should satisfy ‖Tzw(s)‖∞ �1 where Tzw(s) denotes
the closed-loop transfer function from w to z. Let x :=
(x1, x2, x3, x4, x5, x6)

T = (log10 kp1 , log10 ki1 , log10 kd1 , log10
kp2 , log10 ki2 , log10 kd2)

T denote the each particle in the swarm.
The objective function f (x) is defined as f (x)=‖Tzw(s; x)‖∞,
and the constraint h(x) := �max(x) < � = −10−4 is intro-
duced to guarantee the stability of the system in Fig. 5. The
swarm size is equal to mp = 100, kmax = 3, v0

i = 0, �0 = 0,
�0 = [1, 1, . . . , 1], � = 0.9, c1 = c2 = 0.8, and �h = 10−4.
The search space is set as D := {x ∈ R6 : x�x�x} where
x := −(3, 3, . . . , 3) ∈ R6 and x := (3, 3, . . . , 3) ∈ R6.
Then, the optimization process based on the ALPSO algo-
rithm is performed, and the following controller gains are ob-
tained: (k∗

p1
, k∗

i1
, k∗

d1
, k∗

p2
, k∗

i2
, k∗

d2
)= (1.8015, 1.9477, 2.6827×

10−2, 1.8252, 1.8135, 1.188 × 10−2). In this case, the value
f (x∗) = ‖Tzw(s; x∗)‖∞ is 0.5842. Note that f (x∗) = 0.5842
of our approach is not worse than the result, f (x∗) = 0.5882,
of Saeki (2006). Also, the computation time is similar to that of
Saeki (2006). However, it should be noted that the controller
gains are found by just solving the constrained optimization
problem based on the ALPSO technique. It means that our strat-
egy is considerably simple, and thus is easily implementable
in various engineering applications using PID controller, since
it enables one to avoid specific LMI transformations given in
Saeki (2006).

5. Conclusion

In this paper, a considerably simple and computationally
tractable tuning strategy for robust PID controllers satisfying

multiple H∞ specifications is developed. Generally, the design
problem for optimal robust PID controllers based on H∞ tech-
niques results in a non-convex optimization problem subject
to multiple inequality constraints. In order to solve simply and
directly such a design problem, the ALPSO based robust gain
tuning scheme for PID controllers is proposed. It performs
without any conservative assumption required in the con-
ventional methods, and further enables one to find a set of
PID gains directly by just solving the constrained optimiza-
tion problem in a straightforward way. It is demonstrated by
several simulation examples that the proposed approach is
considerably simple and convenient to use. From the above
observations, it is expected that the results of this paper will
contribute to the development of practical PID controllers used
in various engineering applications. On the other hand, since
PSO used in this paper is essentially a stochastic approach, it
may fail to find PID gains even if the constraints are feasible.
Thus, future research will be devoted to improve the conver-
gence performance and the search ability of constrained PSO
algorithm.
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